排序
常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序
排序算法 | 时间复杂度 | 是否基于比较 | 稳定性 |
---|---|---|---|
冒泡 | n2 | 是 | 稳定 |
插入 | n2 | 是 | 稳定 |
选择 | n2 | 是 | 不稳定 |
快排 | n logn | 是 | 不稳定 |
归并 | nlogn | 是 | 稳定 |
桶排序 | n | 否 | 稳定 |
计数排序 | n+k(k是数据范围) | 否 | 稳定 |
基数排序 | dn(d是维度) | 否 | 稳定 |
堆排序 | |||
希尔排序 |
一、冒泡
冒泡排序每次操作相邻的两个元素进行比较,看是否满足大小关系,如果不满足就互换;一次冒泡至少让一个元素到达他应该的位置,重复n次,也就完成了排序
1 | // 冒泡排序 |
二、插入排序
插入排序将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
1 | void insertSort(std::vector<int>& vec) { |
关注希尔排序
三、选择排序
不稳定、不稳定、不稳定
因为选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。
1 | // 选择排序 |
四、归并排序
稳定的
利用分治思想,将一个大问题分解成子问题;将一个数组分解成两个数组,在这两个数组的基础上再进行分解;而最终的子问题是两个只有一个元素的数组,对这两个元素进行排序(交换)即可;最后再将子问题进行合并。
归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是 O(nlogn)。
1. 如何计算时间复杂度呢?
我们假设对 n 个元素进行归并排序需要的时间是 T(n),那分解成两个子数组排序的时间都是 T(n/2)。我们知道,merge() 函数合并两个有序子数组的时间复杂度是 O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:
1 | T(1) = C; n=1时,只需要常量级的执行时间,所以表示为C。 |
通过这样一步一步分解推导,我们可以得到 T(n) = 2^kT(n/2^k)+kn。当 T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到 k=log2n 。我们将 k 值代入上面的公式,得到 T(n)=Cn+nlog2n 。如果我们用大 O 标记法来表示的话,T(n) 就等于 O(nlogn)。所以归并排序的时间复杂度是 O(nlogn)。
2. 空间复杂度
尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。
3. 实现
1 | void Merge(std::vector<int>& vec, int left1, int right1, int left2, int right2) { |
五、快速排序
不稳定、不稳定,数据的交换导致的相同元素顺序不一定一致
1 | int partition(std::vector<int>& vec, int left, int right) { |
时间复杂度 nlogn
1. 如何求一个数组中第K大的元素呢
使用快排的思想。快排在求 pivot 的时候,pivot 左侧的数都是小于 pivot 的,pivot 右侧的数都是大于 pivot 的,则 pivot 的值就为第 pivot 大的数。
我们选择数组区间 A[0…n-1]的最后一个元素 A[n-1]作为 pivot,对数组 A[0…n-1]原地分区,这样数组就分成了三部分,A[0…p-1]、A[p]、A[p+1…n-1]。如果 p+1=K,那 A[p]就是要求解的元素;如果 K>p+1, 说明第 K 大元素出现在 A[p+1…n-1]区间,我们再按照上面的思路递归地在 A[p+1…n-1]这个区间内查找。
我们再来看,为什么上述解决思路的时间复杂度是 O(n)?第一次分区查找,我们需要对大小为 n 的数组执行分区操作,需要遍历 n 个元素。第二次分区查找,我们只需要对大小为 n/2 的数组执行分区操作,需要遍历 n/2 个元素。依次类推,分区遍历元素的个数分别为、n/2、n/4、n/8、n/16.……直到区间缩小为 1。如果我们把每次分区遍历的元素个数加起来,就是:n+n/2+n/4+n/8+…+1。这是一个等比数列求和,最后的和等于 2n-1。所以,上述解决思路的时间复杂度就为 O(n)。
2. 快速排序的优化
如果数据原来就是有序的或者接近有序的,每次分区点都选择最后一个数据,那快速排序算法就会变得非常糟糕,时间复杂度就会退化为 O(n2)。实际上,这种 O(n2) 时间复杂度出现的主要原因还是因为我们分区点选得不够合理。
- 优化分区算法:三数取中法
我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这 3 个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。但是,如果要排序的数组比较大,那“三数取中”可能就不够了,可能要“五数取中”或者“十数取中”。
1 | // 三数取中 |
3. 思考题目
- 现在你有 10 个接口访问日志文件,每个日志文件大小约 300MB,每个文件里的日志都是按照时间戳从小到大排序的。你希望将这 10 个较小的日志文件,合并为 1 个日志文件,合并之后的日志仍然按照时间戳从小到大排列。如果处理上述排序任务的机器内存只有 1GB,你有什么好的解决思路,能“快速”地将这 10 个日志文件合并吗?
合并归并的思路
六、桶排序
核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
如果要排序的数据有 n 个,我们把它们均匀地划分到 m 个桶内,每个桶里就有 k=n/m 个元素。每个桶内部使用快速排序,时间复杂度为 O(k * logk)。m 个桶排序的时间复杂度就是 O(m * k * logk),因为 k=n/m,所以整个桶排序的时间复杂度就是 O(n*log(n/m))。当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)。
- 桶排序对要排序数据的要求
- 首先,要排序的数据需要很容易就能划分成 m 个桶,并且,桶与桶之间有着天然的大小顺序。这样每个桶内的数据都排序完之后,桶与桶之间的数据不需要再进行排序。
- 其次,数据在各个桶之间的分布是比较均匀的。如果数据经过桶的划分之后,有些桶里的数据非常多,有些非常少,很不平均,那桶内数据排序的时间复杂度就不是常量级了。在极端情况下,如果数据都被划分到一个桶里,那就退化为 O(nlogn) 的排序算法了。
桶排序适合外部排序,所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。
1. 例子
- 比如说我们有 10GB 的订单数据,我们希望按订单金额(假设金额都是正整数)进行排序,但是我们的内存有限,只有几百 MB,没办法一次性把 10GB 的数据都加载到内存中。这个时候该怎么办呢?
- 借助桶排序的处理思想来解决这个问题。我们可以先扫描一遍文件,看订单金额所处的数据范围。假设经过扫描之后我们得到,订单金额最小是 1 元,最大是 10 万元。我们将所有订单根据金额划分到 100 个桶里,第一个桶我们存储金额在 1 元到 1000 元之内的订单,第二桶存储金额在 1001 元到 2000 元之内的订单,以此类推。每一个桶对应一个文件,并且按照金额范围的大小顺序编号命名(00,01,02…99)。理想的情况下,如果订单金额在 1 到 10 万之间均匀分布,那订单会被均匀划分到 100 个文件中,每个小文件中存储大约 100MB 的订单数据,我们就可以将这 100 个小文件依次放到内存中,用快排来排序。等所有文件都排好序之后,我们只需要按照文件编号,从小到大依次读取每个小文件中的订单数据,并将其写入到一个文件中,那这个文件中存储的就是按照金额从小到大排序的订单数据了。不过,你可能也发现了,订单按照金额在 1 元到 10 万元之间并不一定是均匀分布的 ,所以 10GB 订单数据是无法均匀地被划分到 100 个文件中的。有可能某个金额区间的数据特别多,划分之后对应的文件就会很大,没法一次性读入内存。这又该怎么办呢?针对这些划分之后还是比较大的文件,我们可以继续划分,比如,订单金额在 1 元到 1000 元之间的比较多,我们就将这个区间继续划分为 10 个小区间,1 元到 100 元,101 元到 200 元,201 元到 300 元….901 元到 1000 元。如果划分之后,101 元到 200 元之间的订单还是太多,无法一次性读入内存,那就继续再划分,直到所有的文件都能读入内存为止。
七、计数排序
1 |
|
计数排序只能用在数据范围不大的场景中,如果数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。
八、基数排序
比如 10w 个手机号码,可以先排序第一位,在排第二位;依次向后。如果遇到长度不一样,则可以补齐一样长。
1 | 基数排序对要排序的数据是有要求的,需要可以分割出独立的“位”来比较,而且位之间有递进的关系,如果 a 数据的高位比 b 数据大,那剩下的低位就不用比较了。除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到 O(n) 了。 |
九、qsort 的实现
- 对于小数据量的排序使用归并排序,典型的空间换时间
- 排序数据量较大时使用快速排序,而且使用三数取中法选择分区节点
- qsort 用于递归的栈是自己实现的,防止堆栈溢出
- 当元素数量小于等于4时,qsort 退化为插入排序